Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(4): e23706, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591869

RESUMEN

In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.


Asunto(s)
Antineoplásicos , Neoplasias , Femenino , Humanos , Tacrina/farmacología , Tacrina/química , Antifúngicos/farmacología , Anticonvulsivantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Estructura Molecular
2.
Langmuir ; 38(33): 10098-10113, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35946525

RESUMEN

Adsorption is a widely used method for pollution removal and for the recovery of valuable species. In recent years, the use of metal-organic compounds among the adsorbents used in adsorption studies has increased. In this study, the performance of the water-insoluble Fe complex as a metal organic framework (MOF-Fe-Ta) of water-soluble tannic acid, which is not used as an adsorbent in uranium recovery and removal, was investigated. For the characterization of the new synthesized material, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analyses were performed. The changes in the adsorption process based on various parameters were investigated and discussed. The point of zero charges value of the adsorbent was found as 5.52. It was noticed that the adsorption increases as the pH increases. Analyzing the effect of concentration on adsorption, we determined which model explained the adsorption better. The monolayer capacity of the adsorbent determined in light of the Langmuir model was reported as 0.347 mol kg-1. The Freundlich constant, namely the ß value obtained in the Freundlich model, which is a measure of surface heterogeneity, was found to be 0.434, and the EDR value, which was found from the Dubinin-Raduskevich model and accepted as a measure of adsorption energy, was 10.3 kJ mol-1. The adsorption was kinetically explained by the pseudo-second-order model and the adsorption rate constant was reported as 0.15 mol-1 kg min-1. The effect of temperature on adsorption was studied; it was emphasized that adsorption was energy consuming, that is, endothermic and ΔH was found as 7.56 kJ mol-1. The entropy of adsorption was positive as 69.3 J mol-1 K-1. As expected, the Gibbs energy of adsorption was negative (-13.1 kJ mol-1 at 25 °C), so adsorption was considered as a spontaneous process. Additionally, the power and mechanism of the interaction between studied adsorbent and adsorbate are explained through density functional theory computations. Computationally obtained data supported the experimental studies.

3.
J Biomol Struct Dyn ; 40(22): 11837-11850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34402765

RESUMEN

A Schiff base, 5-(4-methylphenyl)-4-[(pyridin-2-ylmethylidene)amino]-4H-1,2,4-oxadiazole as a bidentate ligand has been synthesized by the reaction between the 4-amino-5-(4-methylphenyl)-4H-1,3,4-oxadiazole and aromatic aldehyde. The Schiff base reacted with CoCl3·6H2O and CrCl3·6H2O in ethanol to yield 1,3,4-oxadiazole complexes. The structures of synthesized ligand and their complexes have been established on the basis of their IR, Mass and 1H-NMR spectra. Electronic and geometric structures of both cobalt and chromium complexes were investigated by density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations. DFT-based reactivity calculations estimated the studied system as strong electrophile and/or strong nucleophile in polar organic reactions. Moreover, most reactive sites were predicted theoretically based on the delocalized and localized indexes. The nature of Ligand-Metal chemical bonding is discussed in terms of the natural bond orbital (NBO) and QTAIM analysis. Accordingly, the metal ions such as cobalt and chromium are bidentate coordinated with the Schiff base by nitrogen atoms of imine function and pyridine, to form stable complexes. Furthermore, the chromium ions have an affinity superior to the cobalt ions towards Schiff base ligand. In addition, the results of the antibacterial activity in-vitro show that the metal complexation confers an increase in the antibacterial activity of the complexed ligand compared to the free ligand against both Gram-positive and Gram-negative bacteria with broad spectrum activity. In silico molecular docking studies of the ligands and their complexes were applied to describe the probable binding modes into the active site of Escherichia coli (E. coli) FabH and Salmonella typhimurium LT2 neuraminidase (STNA) receptors. The increase in biological activity could be attributed to the high stability of the complexes and strong affinities to bacterial enzyme receptors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cobalto , Complejos de Coordinación , Cobalto/química , Antibacterianos/química , Simulación del Acoplamiento Molecular , Teoría Funcional de la Densidad , Complejos de Coordinación/química , Cromo , Bases de Schiff/química , Ligandos , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Oxadiazoles/farmacología , Metales , Iones , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA